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How to build a PSSM

• A PSSM is based on the frequencies of each residue in a specific position
of a multiple alignment.
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Because of their general use in multiple alignment methods, in the first part of the
chapter we describe methods for producing profiles, which at one level can be
regarded as representations of alignments. Multiple alignments can be used in
various ways to generate special scoring schemes for searching for other similar
sequences. Position-specific scoring matrices (PSSMs), which take into account the
position in the alignment when scoring matches, have been very successful in this
context. Programs that use PSSMs include PSI-BLAST, for searching sequence data-
bases, and LAMA, for searching a database of alignments with a query alignment.

We then discuss the use of hidden Markov models (HMMs), especially profile
HMMs to define a sequence profile of a protein family. Sequence profiles can then
be used to search for other family members. HMMs are based on a sound proba-
bilistic theory, and are used in many multiple alignment and sequence-profile
programs. Unlike PSSMs, HMMs do not require an alignment, and can produce a
description of a family of related sequences without any prior alignment.
Relationships between sequence families can be discovered by aligning profiles,
which can be the most sensitive way to detect homology.

Most methods of multiple alignment are based on modifications of the pairwise
dynamic programming techniques described in Section 5.2. In these methods the
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Mind Map 6.1 
A mind map illustrating the topics
covered in patterns, profiles, and
multiple alignments. A large part is
devoted to the all-important subject
of scoring schemes.
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chapter we describe methods for producing profiles, which at one level can be
regarded as representations of alignments. Multiple alignments can be used in
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sequences. Position-specific scoring matrices (PSSMs), which take into account the
position in the alignment when scoring matches, have been very successful in this
context. Programs that use PSSMs include PSI-BLAST, for searching sequence data-
bases, and LAMA, for searching a database of alignments with a query alignment.

We then discuss the use of hidden Markov models (HMMs), especially profile
HMMs to define a sequence profile of a protein family. Sequence profiles can then
be used to search for other family members. HMMs are based on a sound proba-
bilistic theory, and are used in many multiple alignment and sequence-profile
programs. Unlike PSSMs, HMMs do not require an alignment, and can produce a
description of a family of related sequences without any prior alignment.
Relationships between sequence families can be discovered by aligning profiles,
which can be the most sensitive way to detect homology.

Most methods of multiple alignment are based on modifications of the pairwise
dynamic programming techniques described in Section 5.2. In these methods the
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Because of their general use in multiple alignment methods, in the first part of the
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bases, and LAMA, for searching a database of alignments with a query alignment.

We then discuss the use of hidden Markov models (HMMs), especially profile
HMMs to define a sequence profile of a protein family. Sequence profiles can then
be used to search for other family members. HMMs are based on a sound proba-
bilistic theory, and are used in many multiple alignment and sequence-profile
programs. Unlike PSSMs, HMMs do not require an alignment, and can produce a
description of a family of related sequences without any prior alignment.
Relationships between sequence families can be discovered by aligning profiles,
which can be the most sensitive way to detect homology.

Most methods of multiple alignment are based on modifications of the pairwise
dynamic programming techniques described in Section 5.2. In these methods the
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Sequence Families

§ Functional biological sequences typically come in families – these 
sequences will be expected to have similar properties at equivalent 
regions

§ Sequences in a family have diverged during evolution, but normally 
maintain the same or a related function

§ Thus, identifying that a sequence belongs to a family tells about its 
function



Sequences from a Globin Family102 5 Profile HMMs for sequence families

Helix AAAAAAAAAAAAAAAA BBBBBBBBBBBBBBBBCCCCCCCCCCC
HBA_HUMAN ---------VLSPADKTNVKAAWGKVGA--HAGEYGAEALERMFLSFPTTKTYFPHF
HBB_HUMAN --------VHLTPEEKSAVTALWGKV----NVDEVGGEALGRLLVVYPWTQRFFESF
MYG_PHYCA ---------VLSEGEWQLVLHVWAKVEA--DVAGHGQDILIRLFKSHPETLEKFDRF
GLB3_CHITP ----------LSADQISTVQASFDKVKG------DPVGILYAVFKADPSIMAKFTQF
GLB5_PETMA PIVDTGSVAPLSAAEKTKIRSAWAPVYS--TYETSGVDILVKFFTSTPAAQEFFPKF
LGB2_LUPLU --------GALTESQAALVKSSWEEFNA--NIPKHTHRFFILVLEIAPAAKDLFS-F
GLB1_GLYDI ---------GLSAAQRQVIAATWKDIAGADNGAGVGKDCLIKFLSAHPQMAAVFG-F
Consensus Ls.... v a W kv . . g . L.. f . P . F F

Helix DDDDDDDEEEEEEEEEEEEEEEEEEEEE FFFFFFFFFFFF
HBA_HUMAN -DLS-----HGSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL-
HBB_HUMAN GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHL---D--NLKGTFATLSELHCDKL-
MYG_PHYCA KHLKTEAEMKASEDLKKHGVTVLTALGAILKK----K-GHHEAELKPLAQSHATKH-
GLB3_CHITP AG-KDLESIKGTAPFETHANRIVGFFSKIIGEL--P---NIEADVNTFVASHKPRG-
GLB5_PETMA KGLTTADQLKKSADVRWHAERIINAVNDAVASM--DDTEKMSMKLRDLSGKHAKSF-
LGB2_LUPLU LK-GTSEVPQNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG-
GLB1_GLYDI SG----AS---DPGVAALGAKVLAQIGVAVSHL--GDEGKMVAQMKAVGVRHKGYGN
Consensus . t .. . v..Hg kv. a a...l d . a l. l H .

Helix FFGGGGGGGGGGGGGGGGGGG HHHHHHHHHHHHHHHHHHHHHHHHHH
HBA_HUMAN -RVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR------
HBB_HUMAN -HVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH------
MYG_PHYCA -KIPIKYLEFISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG
GLB3_CHITP --VTHDQLNNFRAGFVSYMKAHT--DFA-GAEAAWGATLDTFFGMIFSKM-------
GLB5_PETMA -QVDPQYFKVLAAVIADTVAAG---------DAGFEKLMSMICILLRSAY-------
LGB2_LUPLU --VADAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA---
GLB1_GLYDI KHIKAQYFEPLGASLLSAMEHRIGGKMNAAAKDAWAAAYADISGALISGLQS-----
Consensus v. f l . .. .... f . aa. k. . l sky

Figure 5.1 An alignment of seven globins from Bashford, Chothia &
Lesk [1987]. To the left is the protein identifier in the SWISS-PROT

database [Bairoch & Apweiler 1997]. The eight alpha helices are shown as
A–H above the alignment. A consensus line below the alignment indicates
residues that are identical among at least six of the seven sequences in upper
case, ones identical in four or five sequences in lower case, and positions
where there is a residue identical in three sequences with a dot.

them, and certain residues are particularly strongly conserved. When identifying
a new sequence as a globin, it would be desirable to concentrate on checking that
these more conserved features are present. How to obtain and use such informa-
tion will be the subject of this chapter.

As might be expected, our approach to consensus modelling will be to make
a probabilistic model. In particular, we will develop a particular type of hidden
Markov model well suited to modelling multiple alignments. We call these profile
HMMs after standard profiles, which are closely related non-probabilistic struc-
tures introduced previously for the same purpose by Gribskov, McLachlan &
Eisenberg [1987]. Profile HMMs are probably the most popular application of
hidden Markov models in molecular biology at the moment [Eddy 1996].

We will assume for the purposes of this chapter that we are given a correct
multiple alignment, from which we will build a model that can be used to find and
score potential matches to new sequences. The multiple alignment could be built

Alignment of 
7 globins

The 8 alpha helices 
are shown as A-H 
above the alignment

Helices are more
conserved than 
the loop regions



Position Specific Score Matrix (PSSM)

§ Substitution score matrix defines score       for two residues without 
regard to their environment   

§ For finding all family members we need to account for known residue 
preferences at each alignment position. 

§ Inclusion of these position- specific preferences in the scoring scheme is 
achieved with the use of a scoring profile in which each alignment position 
has its own substitution scores. 

§ Position-specific scoring matrices (PSSMs) 
– frequencies of each residue in a specific position of a multiple alignment. 
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Position Specific Score Matrix (PSSM)

Patterns, Profiles, HMMs, PSI-BLAST Course 2003

How to build a PSSM

• A PSSM is based on the frequencies of each residue in a specific position
of a multiple alignment.
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This document is a sample document to test font families and font typefaces.
Input:

• S = {s1, s2, . . . , st}, set of sequences

• k, length of motif

• N , number of iterations

• S = {s1, s2, . . . , st}, k, N

1. Randomly select k-mers in each sequence to form Motifs = {Motif1, . . . ,Motift}

For each k-mer in sremoved, calculate P (k-mer|Profile) p1, p2, ..., pn�k+1, n: length of each sequence

• Column 1: f1,A = 0
5 = 0, f1,G = 5

5 = 1, ...

• Column 2: f2,A = 0
5 = 0, f2,H = 5

5 = 1, ...

• . . .

• Column 15: f15,A = 2
5 = 0.4, f15,C = 1

5 = 0.2, ...

1

frequencies of each residue 
in a specific position of 
a multiple alignment. 

note that in that example the PSSM has been transposed, so that the 20 rows have
become 20 columns. It is possible to use one or two extra rows with parameters that
relate to position-dependent gap penalties. Such matrices are usually referred to as
profiles rather than PSSMs. (A PSSM, with only 20 rows, will use identical gap penal-
ties at all sequence positions.) The values assigned to the PSSM are a weighted func-
tion of the values of a standard substitution matrix of the form discussed in Section
5.1, for example BLOSUM-45. We will write a substitution score matrix element sa,b

for the alignment of residue types a and b, and will label the elements of the PSSM
mu,a for column u and row (residue type) a.

One possible derivation of PSSM values uses the average of the scores of the residue
types found at each alignment position. If a particular alignment column contains
a perfectly conserved tyrosine residue, for example, the score on aligning a residue
from another sequence to that position is taken to be the same as if we were dealing
with just a single tyrosine residue. The elements of that column in the PSSM are the
sa,b elements that relate to tyrosine; that is, for row (residue type) a they are sa,Y,
using the one-letter amino acid code for the subscript. If instead the residue pref-
erence of that column was exactly shared by tyrosine and tryptophan, then each
row a of the PSSM column will have the score (sa,Y + sa,W)/2. Generalizing this, if
there are nu,b residues of type b at column u, comprising a fraction fu,b of the column
residues, i.e.,

(EQ6.1)

then the score associated with row a and column u will be

(EQ6.2)

If the residue type in an alignment column is found to be highly conserved, it seems
sensible to give the preferred residues extra support, because the residue types
rarely found are probably highly disfavored at that position. Rather than using the
fraction fu,b, the following logarithmic form of weighting the substitution scores has
been proposed:

(EQ6.3)

where differs from fu,b as defined by Equation EQ6.1, in that the denominator
is (Nseq + 1) instead of Nseq. (This is necessary to avoid the numerator becoming – •
for alignment columns only containing a single residue type.) The value of the ratio
of the logs varies between 0 and 1 as does fu,b, but residues present in a smaller frac-
tion of the sequences are relatively under-weighted.

Although the two methods just described have been applied successfully to create
useful PSSMs, neither is of the log-odds ratio form that was shown in Section 5.1 to
be particularly appropriate for alignment scoring. We will define the probability of
residue type a occurring in column u of the PSSM as qu,a, and the probability of
residue type a occurring at any position in any sequence, including those not
related to the PSSM sequence family (i.e., the background frequency), as pa. The qu,a

are the PSSM equivalent of the qa,b of Section 5.1, which are the probability of
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Position Specific Score Matrix (PSSM)

§ frequencies of each residue in a specific position of a multiple alignment.

§

§ Log-odds form for a PSSM element

note that in that example the PSSM has been transposed, so that the 20 rows have
become 20 columns. It is possible to use one or two extra rows with parameters that
relate to position-dependent gap penalties. Such matrices are usually referred to as
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This document is a sample document to test font families and font typefaces.
Input:

• S = {s1, s2, . . . , st}, set of sequences

• k, length of motif

• N , number of iterations

• S = {s1, s2, . . . , st}, k, N

1. Randomly select k-mers in each sequence to form Motifs = {Motif1, . . . ,Motift}

For each k-mer in sremoved, calculate P (k-mer|Profile) p1, p2, ..., pn�k+1, n: length of each sequence

• Column 1: f1,A = 0
5 = 0, f1,G = 5

5 = 1, ...

• Column 2: f2,A = 0
5 = 0, f2,H = 5

5 = 1, ...

• . . .

• Column 15: f15,A = 2
5 = 0.4, f15,C = 1

5 = 0.2, ...

Score Associated with row a and column u will be

1

note that in that example the PSSM has been transposed, so that the 20 rows have
become 20 columns. It is possible to use one or two extra rows with parameters that
relate to position-dependent gap penalties. Such matrices are usually referred to as
profiles rather than PSSMs. (A PSSM, with only 20 rows, will use identical gap penal-
ties at all sequence positions.) The values assigned to the PSSM are a weighted func-
tion of the values of a standard substitution matrix of the form discussed in Section
5.1, for example BLOSUM-45. We will write a substitution score matrix element sa,b

for the alignment of residue types a and b, and will label the elements of the PSSM
mu,a for column u and row (residue type) a.

One possible derivation of PSSM values uses the average of the scores of the residue
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residues, i.e.,
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useful PSSMs, neither is of the log-odds ratio form that was shown in Section 5.1 to
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residue type a occurring at any position in any sequence, including those not
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This is not a log-odds ratio

aligning two residues of types a and b when they are part of a meaningful alignment.
The log-odds form for a PSSM element can then be written

(EQ6.4)

If there are sufficient sequence data available, qu,a can be identified with fu,a as given by
Equation EQ6.1. The pa are readily obtained from the analysis of database composition.

Because PSSMs are often used in database searches for other members of the
sequence family, it is important to understand the scoring statistics, as was the case
for BLAST and FASTA searches as discussed in Section 5.4. As was explained then,
each substitution matrix has a value l associated with it that has a strong influence
on the statistics. The following general formula applies to log-odds substitution
matrices relating the alignment of two residues of types a and b:

(EQ6.5)

(Compare this equation with Equation EQ5.31, which was encountered in the discus-
sion of the significance of alignment scores.) Equation EQ6.5 can be rearranged to give

(EQ6.6)

By analogy, an alternative to Equation EQ6.4 is

(EQ6.7)

where the value of l can be specified to control the scoring statistics. It is a simple
scaling factor for the scores, and so could be omitted. However, this method of
obtaining PSSM values has been applied in the PSI-BLAST method described
below, where the l parameter is used to selectively scale the scores as desired.

If position-dependent gap penalties are included, these can be assigned manually on
the basis of the location of secondary structural elements to give smaller penalties for
creating alignment gaps between these elements. An alternative approach is to have
a position-specific multiplier of the gap penalty at column u, , such that an affine
gap penalty for a gap of length ngap extending across this column has a penalty

(EQ6.8)

where I and E are the gap opening and extension penalties, respectively (see
Equation EQ5.14). One proposed assignment of values to starts by identifying
the length of the longest gap that occurs that includes column u and the highest
possible score in the substitution matrix used. These values are used to scale so
that the penalty applied to the longest observed gap is of the same magnitude as the
highest possible score in the substitution matrix.

Thus far, we have treated each sequence in the alignment equally. The best PSSM
will represent the full range of diversity within the sequence family in an unbiased
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probability of a occurring at u of PSSM

background frequency



PSSM: Sequence Weighting

§ PSSM should represent the full range of diversity within the sequence 
family in an unbiased fashion. 

§ A partial set of family sequences will most probably be biased toward a 
certain subgroup 

§ Different sequences must be weighted, the weighting should be reduced for 
very similar sequences. 
– More sensitive to distant relationships. 



Sequence Weighting Scheme for MSA
§ Tree-based weights assume that sequences are related by an evolutionary 

tree
– Need not be the case for alignments of short and distantly related sequences, 

where root location can be uncertain. 

§ In a pairwise distance method, every sequence is assumed to lie some 
distance away from every other sequence, or from some generalized 
sequence 

§ The sequence weights are typically applied to PSSMs in which each 
position vector is considered independently of all others. 
– Useful sequence weights might be based on the diversity observed at each 

position in an alignment rather than on the diversity measured for whole 
sequences. 
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Position-based Sequence Weights 
Steven Henikoff and Jorja G. Henikoff 

Howard Hughes Medical Institute, Fred Hutchinson Cancer Research C’mte, 
Seattle. Wihington 98104, US.A. 

Sequence weighting methods have been used to reduce redundancy and emphasize cliversitJ 
in multiple sequence alignment and searching applications. Each of these methods is based on 
a notion of distance between a sequence and an ancestral or generalized sequence. We describe 
a different approach, which bases weights on the diversity observed at ea,rh position in t,he 
alignment, rather than on a sequence distance measure. These position-based weights ma.ke 
minimal assumptions, are simple to compute. and perform well in comprehensive evaluations. 

Keywor& multiple sequence alignment; sequence weighting; profiles: database searching: 
protein blocks 

Redundancy is a common feature of sequence 
databanks, where a typical gene or protein family is 
represented by a highly non-random sample of 
sequences. For example, an ancient, protein family 
might be represented by a few highly diverged 
microbial and invertebrate sequences plus many 
mammalian sequences that form a closely related 
subgroup. This situation can be detrimental in 
sequence alignment and searching a.pplications. 
where it is usually desirable to represent the diversity 
among related sequences. Since closely related 
sequences are largely redundant, they provide less 
information in a multiple sequence alignment than 
their distant cousins. 

Sequence weighting methods have been introduced 
to compensate for over-representation among multi- 
ply aligned sequences. Low weights are given to 
sequences that are redundant and high weights to 
sequences that are diverged. Sequence weights can be 
applied in the construction of a position-specific 
scoring matrix (PSSMt), such as a profile (Gribskov 
et al., 1987), which is an ordered set of vectors, each 
of which represents the frequencies of residues 
observed for a position in a multiple alignment. By 
downweighting the contribution of redundant 
sequences to a PSSM, it should be more sensitive to 
distant relationships. Recent empirical results have 
demonstrated the value of sequence weights in 
increasing the sensitivity of protein sequence profiles 
(Thompson et al., 1994; Luthy et al., 1994). 

While there is general agreement concerning the 
value of sequence weights, no consensus has been 
reached as to which method to use. The current 
methods are of two general types, tree-based and 
pairwise distance-based. Tree-based weights assume 
that sequences are related by an evolutionary tree, 

t Abbreviations used: PSSM, position-specific sroring 
matrix. 

and that a reasonably correct tree can be deduced 
from the available sequences (Felsenstein, 1985). 
However, this need not be the case for alignments of 
short and distantly related sequences, where root 
location can be uncertain. This uncertainty can 
adversely affect the ACL tree-based method (Altschul 
et at.. 1989), which upweights sequences close to t,he 
root. Uncertain root placement, can cause distantly 
related sequences to be downweighted, and this is 
undesirable. For example, in the simple but non- 
trivial alignment of nitrogenase sequence segments 
shown in Table lA, the ACL method gives zero weight 
to the only sequence with F in position 2, thus 
effectively discarding the contribution of this residue 
to a PSSM. To deal with the root problem, branch- 
proportional weights were introduced (Thompson 
et al., 1994). This method determines t,he distance of 
each sequence from the root based on tree topology, 
with higher weights for sequences that share fewel 
nodes with other sequences. This leads to upweighting 
of more distantly related sequences, as desired 
(Table 1A). A concern with tree-based sequence 
weights in general is that they depend upon the parti- 
cular method used for determining evolutionary dis- 
tances and tree topology (e.g. see Saitou & Nei, 1987). 

Pairwise distance methods (Vingron & Sibbald, 
1993) do not require that sequences are related at all. 
and so issues such as topology and root placement. are 
avoided. In a pairwise distance method, every 
sequence is assumed to lie some distance away from 
every other sequence, or from some generalized 
sequence (Vingron & Sibbald, 1993). The set of all 
pairwise distances for aligned sequences ran be 
represented as a distance matrix. Two distance 
matrices are shown in Table 2 for the nitrogenase 
alignment. In the VA method (Vingron & Argos. 
1989), the average number of mismatches between a 
sequence and the other sequences provides a measure 
of its distance from a hypothetical centroid. In the 
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PSSM: Position-based Sequence Weight
§ PSSM: Useful sequence weights based on the diversity observed at each 

position in an alignment rather than on the diversity measured for whole 
sequences.



PSSM: Position-based Sequence Weight

§ In an alignment column, If there are m different residues, each is assigned 
a weight of 1/m. 

§ for each residue type, the number of sequences that have this residue at 
this position is counted. 

§ If there are n sequences with this residue, the weight becomes 1/mn. 

§ An overall weight for the whole sequence can be defined by adding the 
individual column weights and then normalizing by the number of columns 



PSSM: Position-based Sequence Weight

fashion. However, a partial set of family sequences will most probably be biased
toward a certain subgroup. Hence, we must weight the different sequences, and the
weighting should be reduced for very similar sequences. We will look at two
sequence weighting schemes, one of which applies the weight to all residues of a
sequence, the other specifying different weights for each alignment column.

Some PSSMs have been derived using a sequence weighting scheme proposed by
Peter Sibbald and Patrick Argos. In this scheme, weights are assigned to the
sequences on the basis of an iterative procedure. The sequence weights are first
initialized to zero. Random aligned sequences are generated where the residue at
each position is chosen at random from the residues (including any gap) that occur
at that particular position in the aligned sequences. The closest sequence or equally
close sequences to each random sequence are identified, and a weight of 1 is evenly
distributed between them. The sequence weights are normalized to sum to 1.
Further random sequences are generated until the sequence weights are seen to
have converged.

The position-based sequence-weight method assigns weights based on a multiple
alignment. The basic unit used to assign weights is not the whole sequence, but the
individual alignment columns. For each column, the number of different residues
present is counted. If there are m different residues, each is assigned a weight of
1/m. Then for each residue type, the number of sequences that have this residue at
this position is counted. If there are n sequences with this residue, the weight is
equally divided amongst them; that is, the weight becomes 1/mn. These weights
can be used as sequence weights for the individual column, and the total for all
aligned residues is always 1. If desired, an overall weight for the whole sequence can
be defined by adding the individual column weights and then normalizing by the
number of columns, so that the sequence weights also sum to 1. This weighting
scheme is illustrated in Figure 6.1 for a simple example alignment. 

If the weights are labeled for column u of sequence x (including the possibility
that there may be no variation across the alignment columns) the above formulae
can be modified by replacing fu,b with

(EQ6.9)

where is 1 if sequence x has residue b in alignment column u, and 0 otherwise.
Note that both weighting methods discussed above do not require the denominator
sum of Equation EQ6.9, as they both produce weights that sum to 1 for a column.

Methods for overcoming a lack of data in deriving the values
for a PSSM
The log-odds schemes for calculating the PSSM elements mu,a using the formulae
given above all have the property that if any residue type is not observed in the
column u, the score for aligning that residue type in that column will always have
the value – •. As a consequence, no sequence being aligned to the PSSM will be able
to align that residue type at that location. While this might be appropriate for
perfectly conserved and functionally vital positions, even in extreme cases it is
almost certainly too restrictive. (We most probably want to be able to use the PSSM
to align any sequences that code for related but dysfunctional proteins.)
Furthermore, the absence of a particular residue type in a particular column of the
alignment used to derive the PSSM is more likely to indicate a lack of sequence
alignment data rather than the true residue preferences. Such situations are
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Figure 6.1
Illustration of the position-based
sequence weight scheme of
Henikoff and Henikoff. There are
five sequences, each of them is five
residues long. Column 1 contains
only one residue type (H) but there
are five occurrences, so each
histidine has a weight of 1⁄5. Column
4 contains five different residue
types, each of which will be
weighted as 1⁄5. Note that this scheme
does not distinguish between these
two situations, which can be
understood by observing that
neither can be used to prefer any
sequence over any other. In column
2, there are two residue types (S and
T), each of which will be assigned an
initial weight of 1⁄2. As there is only
one instance of S, it is assigned a
weight of 1⁄2. The four Ts will each
have a weight of 1⁄8. After assigning
weights to each residue, the
sequence weights are obtained by
adding the residue weights together
and dividing by the number of
columns. The resulting sequence
weights are given in the right-hand
column.
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PSSM: Position-based Sequence Weight

fashion. However, a partial set of family sequences will most probably be biased
toward a certain subgroup. Hence, we must weight the different sequences, and the
weighting should be reduced for very similar sequences. We will look at two
sequence weighting schemes, one of which applies the weight to all residues of a
sequence, the other specifying different weights for each alignment column.

Some PSSMs have been derived using a sequence weighting scheme proposed by
Peter Sibbald and Patrick Argos. In this scheme, weights are assigned to the
sequences on the basis of an iterative procedure. The sequence weights are first
initialized to zero. Random aligned sequences are generated where the residue at
each position is chosen at random from the residues (including any gap) that occur
at that particular position in the aligned sequences. The closest sequence or equally
close sequences to each random sequence are identified, and a weight of 1 is evenly
distributed between them. The sequence weights are normalized to sum to 1.
Further random sequences are generated until the sequence weights are seen to
have converged.

The position-based sequence-weight method assigns weights based on a multiple
alignment. The basic unit used to assign weights is not the whole sequence, but the
individual alignment columns. For each column, the number of different residues
present is counted. If there are m different residues, each is assigned a weight of
1/m. Then for each residue type, the number of sequences that have this residue at
this position is counted. If there are n sequences with this residue, the weight is
equally divided amongst them; that is, the weight becomes 1/mn. These weights
can be used as sequence weights for the individual column, and the total for all
aligned residues is always 1. If desired, an overall weight for the whole sequence can
be defined by adding the individual column weights and then normalizing by the
number of columns, so that the sequence weights also sum to 1. This weighting
scheme is illustrated in Figure 6.1 for a simple example alignment. 

If the weights are labeled for column u of sequence x (including the possibility
that there may be no variation across the alignment columns) the above formulae
can be modified by replacing fu,b with

(EQ6.9)

where is 1 if sequence x has residue b in alignment column u, and 0 otherwise.
Note that both weighting methods discussed above do not require the denominator
sum of Equation EQ6.9, as they both produce weights that sum to 1 for a column.

Methods for overcoming a lack of data in deriving the values
for a PSSM
The log-odds schemes for calculating the PSSM elements mu,a using the formulae
given above all have the property that if any residue type is not observed in the
column u, the score for aligning that residue type in that column will always have
the value – •. As a consequence, no sequence being aligned to the PSSM will be able
to align that residue type at that location. While this might be appropriate for
perfectly conserved and functionally vital positions, even in extreme cases it is
almost certainly too restrictive. (We most probably want to be able to use the PSSM
to align any sequences that code for related but dysfunctional proteins.)
Furthermore, the absence of a particular residue type in a particular column of the
alignment used to derive the PSSM is more likely to indicate a lack of sequence
alignment data rather than the true residue preferences. Such situations are
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sequence weight scheme of
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only one residue type (H) but there
are five occurrences, so each
histidine has a weight of 1⁄5. Column
4 contains five different residue
types, each of which will be
weighted as 1⁄5. Note that this scheme
does not distinguish between these
two situations, which can be
understood by observing that
neither can be used to prefer any
sequence over any other. In column
2, there are two residue types (S and
T), each of which will be assigned an
initial weight of 1⁄2. As there is only
one instance of S, it is assigned a
weight of 1⁄2. The four Ts will each
have a weight of 1⁄8. After assigning
weights to each residue, the
sequence weights are obtained by
adding the residue weights together
and dividing by the number of
columns. The resulting sequence
weights are given in the right-hand
column.
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fashion. However, a partial set of family sequences will most probably be biased
toward a certain subgroup. Hence, we must weight the different sequences, and the
weighting should be reduced for very similar sequences. We will look at two
sequence weighting schemes, one of which applies the weight to all residues of a
sequence, the other specifying different weights for each alignment column.

Some PSSMs have been derived using a sequence weighting scheme proposed by
Peter Sibbald and Patrick Argos. In this scheme, weights are assigned to the
sequences on the basis of an iterative procedure. The sequence weights are first
initialized to zero. Random aligned sequences are generated where the residue at
each position is chosen at random from the residues (including any gap) that occur
at that particular position in the aligned sequences. The closest sequence or equally
close sequences to each random sequence are identified, and a weight of 1 is evenly
distributed between them. The sequence weights are normalized to sum to 1.
Further random sequences are generated until the sequence weights are seen to
have converged.

The position-based sequence-weight method assigns weights based on a multiple
alignment. The basic unit used to assign weights is not the whole sequence, but the
individual alignment columns. For each column, the number of different residues
present is counted. If there are m different residues, each is assigned a weight of
1/m. Then for each residue type, the number of sequences that have this residue at
this position is counted. If there are n sequences with this residue, the weight is
equally divided amongst them; that is, the weight becomes 1/mn. These weights
can be used as sequence weights for the individual column, and the total for all
aligned residues is always 1. If desired, an overall weight for the whole sequence can
be defined by adding the individual column weights and then normalizing by the
number of columns, so that the sequence weights also sum to 1. This weighting
scheme is illustrated in Figure 6.1 for a simple example alignment. 

If the weights are labeled for column u of sequence x (including the possibility
that there may be no variation across the alignment columns) the above formulae
can be modified by replacing fu,b with

(EQ6.9)

where is 1 if sequence x has residue b in alignment column u, and 0 otherwise.
Note that both weighting methods discussed above do not require the denominator
sum of Equation EQ6.9, as they both produce weights that sum to 1 for a column.

Methods for overcoming a lack of data in deriving the values
for a PSSM
The log-odds schemes for calculating the PSSM elements mu,a using the formulae
given above all have the property that if any residue type is not observed in the
column u, the score for aligning that residue type in that column will always have
the value – •. As a consequence, no sequence being aligned to the PSSM will be able
to align that residue type at that location. While this might be appropriate for
perfectly conserved and functionally vital positions, even in extreme cases it is
almost certainly too restrictive. (We most probably want to be able to use the PSSM
to align any sequences that code for related but dysfunctional proteins.)
Furthermore, the absence of a particular residue type in a particular column of the
alignment used to derive the PSSM is more likely to indicate a lack of sequence
alignment data rather than the true residue preferences. Such situations are
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five sequences, each of them is five
residues long. Column 1 contains
only one residue type (H) but there
are five occurrences, so each
histidine has a weight of 1⁄5. Column
4 contains five different residue
types, each of which will be
weighted as 1⁄5. Note that this scheme
does not distinguish between these
two situations, which can be
understood by observing that
neither can be used to prefer any
sequence over any other. In column
2, there are two residue types (S and
T), each of which will be assigned an
initial weight of 1⁄2. As there is only
one instance of S, it is assigned a
weight of 1⁄2. The four Ts will each
have a weight of 1⁄8. After assigning
weights to each residue, the
sequence weights are obtained by
adding the residue weights together
and dividing by the number of
columns. The resulting sequence
weights are given in the right-hand
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Overcoming lack of Data: Pseudocounts

common in fitting profile models, and a variety of possible solutions have been
proposed that will now be described.

The pa of Equations EQ6.4 and EQ6.7 does not cause the – • values mentioned
above, nor does their estimation suffer from a lack of data. The problem rests
entirely with the estimation of the qu,a and is almost always due to a lack of data.
(The exception to this would be a rare case of a truly perfectly conserved residue
type—an extremely rare occurrence.) All the methods described to overcome the
problem can include sequence weights but they make the formulae more complex,
so for simplicity we will not use them here. The starting point for estimating qu,a is
to use fu,a as given by Equation EQ6.1.

A simple way of trying to overcome the lack of data would be to assume at least one
occurrence of each residue type at each alignment position. It is preferable to treat all
residues and all columns the same way, so in this case Equation EQ6.1 is modified to

(EQ6.10)

in the case of a PSSM with 20 rows (i.e., no position-dependent gap parameters).
Note that the denominator becomes (Nseq + 20) as this is the sum of the numerators
for the 20 different terms. The sum of the qu,a for all possible a must always equal 1
as each sequence must be represented at column u. The inclusion of the extra
observation means that qu,a will never be 0 nor ever reach 1. It is as if we have
increased the amount of data available by 20 residues in each column, and such
additional data are usually called pseudocounts.

It is easy to see that there are more sophisticated ways of adding pseudocounts that
take advantage of the knowledge we have of the properties of sequences. We know
that the amino acid composition of proteins is not uniform and, as discussed in
Section 5.1, the frequency of occurrence pa of residue type a. This knowledge can
readily be incorporated into the formula to obtain

(EQ6.11)

where the parameter b is a simple scaling parameter that determines the total
number of pseudocounts in an alignment column. The advantage of introducing
the b parameter is that we can easily adjust the relative weighting of the pseudo-
counts and real data. When there are a lot of data (i.e., Nseq is large) there is little if
any need for pseudocounts, and b should be much smaller than Nseq, whereas when
there are less data, bshould be larger relative to Nseq. A simple formula that has been
found useful is to make b equal to , although this can result in b being too
small for small values of Nseq. At large values of Nseq this formula approaches

as desired. Often an additional parameter a is used to weight the
observed data, giving a formula more easily expressed in terms of the fu,a than the
nu,a:

(EQ6.12)

In the absence of any data, the pseudocounts would completely determine the
PSSM values. In Bayesian analysis terms, the pseudocounts represent the prior
distribution, which expresses our prior knowledge of the system before we intro-
duce the data. (They can also be seen as an expression of our prejudices and bias!)
See Appendix A for a discussion of Bayesian analysis.
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entirely with the estimation of the qu,a and is almost always due to a lack of data.
(The exception to this would be a rare case of a truly perfectly conserved residue
type—an extremely rare occurrence.) All the methods described to overcome the
problem can include sequence weights but they make the formulae more complex,
so for simplicity we will not use them here. The starting point for estimating qu,a is
to use fu,a as given by Equation EQ6.1.

A simple way of trying to overcome the lack of data would be to assume at least one
occurrence of each residue type at each alignment position. It is preferable to treat all
residues and all columns the same way, so in this case Equation EQ6.1 is modified to
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in the case of a PSSM with 20 rows (i.e., no position-dependent gap parameters).
Note that the denominator becomes (Nseq + 20) as this is the sum of the numerators
for the 20 different terms. The sum of the qu,a for all possible a must always equal 1
as each sequence must be represented at column u. The inclusion of the extra
observation means that qu,a will never be 0 nor ever reach 1. It is as if we have
increased the amount of data available by 20 residues in each column, and such
additional data are usually called pseudocounts.

It is easy to see that there are more sophisticated ways of adding pseudocounts that
take advantage of the knowledge we have of the properties of sequences. We know
that the amino acid composition of proteins is not uniform and, as discussed in
Section 5.1, the frequency of occurrence pa of residue type a. This knowledge can
readily be incorporated into the formula to obtain

(EQ6.11)

where the parameter b is a simple scaling parameter that determines the total
number of pseudocounts in an alignment column. The advantage of introducing
the b parameter is that we can easily adjust the relative weighting of the pseudo-
counts and real data. When there are a lot of data (i.e., Nseq is large) there is little if
any need for pseudocounts, and b should be much smaller than Nseq, whereas when
there are less data, bshould be larger relative to Nseq. A simple formula that has been
found useful is to make b equal to , although this can result in b being too
small for small values of Nseq. At large values of Nseq this formula approaches

as desired. Often an additional parameter a is used to weight the
observed data, giving a formula more easily expressed in terms of the fu,a than the
nu,a:

(EQ6.12)

In the absence of any data, the pseudocounts would completely determine the
PSSM values. In Bayesian analysis terms, the pseudocounts represent the prior
distribution, which expresses our prior knowledge of the system before we intro-
duce the data. (They can also be seen as an expression of our prejudices and bias!)
See Appendix A for a discussion of Bayesian analysis.
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We can improve on the pseudocount distribution suggested by Equations EQ6.11
and EQ6.12, because the substitution matrices contain a more accurate distribu-
tion based on the data from which they were derived. By definition, log-odds
substitution matrices have embedded in them the information about the relative
probabilities of residues aligning because their sequences are related as opposed to
purely random alignment. This is expressed by the terms qa,b/papb for residue types
a and b. Rearranging Equation EQ6.5 we find

(EQ6.13)

If a column u contains a fraction fu,b of type b residues, the probability of finding a
residue of type a aligned with these is proportional to fu,bqa,b/papb. Adding these
terms for all residue types b gives the overall probability of finding a residue of type
a aligned at column u on the basis of existing residues in that column. Because
residue type a occurs at a background frequency pa , this sum needs to be multiplied
by pa to obtain a suitable pseudocount for residue type a. Thus the formula for the
number of pseudocounts of residue type a is

(EQ6.14)

Note that because of the summation, the gu,a can never be 0. If the intermediate
results are available that were used to derive the substitution matrix, the values of
the terms qa,b/papb may be available. If this is not the case, they can be recovered
from the substitution scores sa,b by applying Equation EQ6.13, although the data are
likely to be less accurate. Replacing pa with this in Equation EQ6.12 we obtain the
improved estimate of qu,a:

(EQ6.15)

One possible value for a is Nseq – 1. If the PSSM elements mu,a are calculated using
Equation EQ6.7, then with only one sequence this particular a will result in the mu,a

being the substitution matrix values sa,b (see Equation EQ6.13). The value of b
controls how much the PSSM is biased to the substitution matrix when there are
few data available. In PSI-BLAST (see below) a value of 10 is used by default.

The derivation of pseudocounts from substitution scoring matrices goes some way
toward using a more realistic prior distribution. However, that method as well as
all the others described so far have qualitatively inaccurate features. Only the rela-
tive frequency of different amino acids in an alignment column affects the PSSM
values. All PSSM columns based on the observation of a single fully conserved
amino acid will have the same values regardless of whether the alignment
contained just three or a thousand sequences. Clearly the latter case, with no
exceptions in a thousand observations, should be treated differently, with far
greater penalties for the presence of a different residue than when the PSSM has
been derived from only three sequences. The second incorrect feature is that no
distinction is made between the different possible environments of a residue. The
probabilities associated in these methods with any two aligned residue types are
the same in all circumstances. However, it is well known that alignment columns
often show a clear preference for a small set of residues with similar properties,
such as charge, size, or polarity. In reality the alignment probabilities will differ for
a given pair of residue types according to these preferences. The probability of
aligning a leucine to a column will differ according to whether that column has a
perfectly conserved leucine, conserved residues that are small and hydrophobic,
or no apparent residue preference.
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PSSM Example

Patterns, Profiles, HMMs, PSI-BLAST Course 2003

Example

• The complete position specific scoring matrix calculated from the previous
example:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 1.3 0.7 -0.2 1.3
C -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 0.7 -0.2 -0.2 -0.2 -0.2 0.7
D -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2
E -0.2 -0.2 2.3 -0.2 0.7 -0.2 -0.2 -0.2 0.7 -0.2 -0.2 -0.2 -0.2 0.7 -0.2
F -0.2 -0.2 -0.2 0.7 -0.2 -0.2 -0.2 -0.2 0.7 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2
G 2.3 -0.2 -0.2 1.3 -0.2 2.3 0.7 -0.2 0.7 -0.2 1.3 1.7 0.7 0.7 -0.2
H -0.2 2.3 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2
I -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 0.7
K -0.2 -0.2 -0.2 0.7 0.7 -0.2 0.7 0.7 -0.2 0.7 -0.2 -0.2 -0.2 -0.2 -0.2
L -0.2 -0.2 -0.2 0.7 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 0.7 -0.2 1.3 -0.2 -0.2
M -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 0.7 -0.2 -0.2 -0.2 -0.2 -0.2
N -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2
P -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 0.7 -0.2 0.7 -0.2 -0.2
Q -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2
R -0.2 -0.2 -0.2 -0.2 0.7 -0.2 -0.2 0.7 -0.2 0.7 0.7 -0.2 -0.2 -0.2 -0.2
S -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 0.7 -0.2 -0.2 -0.2 -0.2 0.7 -0.2
T -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 0.7 0.7 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2
V -0.2 -0.2 -0.2 -0.2 0.7 -0.2 -0.2 0.7 0.7 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2
W -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2
Y -0.2 -0.2 -0.2 -0.2 0.7 -0.2 0.7 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 0.7 -0.2
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How to build a PSSM

• A PSSM is based on the frequencies of each residue in a specific position
of a multiple alignment.

0  0  0  0  0  0  0  0  0  0  0  0  0  0  1

5  0  0  2  0  5  1  0  1  0  2  3  1  1  0

0  0  5  0  1  0  0  0  1  0  0  0  0  1  0
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
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0  0  0  0  1  0  0  1  1  0  0  0  0  0  0
0  0  0  0  0  0  1  1  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
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Jalview Michele Clamp 1998
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sp|P40848|DHP1_SCHPO
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• Column 1: fA,1 = 0
5 = 0, fG,1 = 5

5 = 1, ...

• Column 2: fA,2 = 0
5 = 0, fH,2 = 5

5 = 1, ...

• ...

• Column 15: fA,15 = 2
5 = 0.4, fC,15 = 1

5 = 0.2, ...
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How to build a PSSM

• A PSSM is based on the frequencies of each residue in a specific position
of a multiple alignment.
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PSI-BLAST (Position-Specific Iterated BLAST) 

§ Carefully constructed PSSM can find many distant members of a 
protein sequence family not easily found by a standard sequence 
search 

§ PSI-BLAST enhances the BLAST database searching method to 
incorporate PSSMs. 

§ Involves series of repeated steps or iterations



PSI-BLAST Algorithm

1. Perform standard BLAST search using a substitution matrix with a single 
query sequence. 

2. Obtain initial set of related sequences whose BLAST score gives an E-
value smaller than a predetermined cut-off 

3. Create a PSSM from alignments of these significant matches with the 
query sequence 

4. Scan PSSM against the database using a variant of the BLAST program 
to identify new sequences with suitably small E-values. 

5. If this second search finds some newly identified related sequences, use 
them to update the PSSM 



PSI-BLAST: Profile Length

§ The profile constructed by PSI-BLAST has exactly the same length as the 
query sequence. Insertions with respect to the query are simply ignored

Dr. R. Sankar, BSE 633 (2019)
Slide Courtesy: Stephen F. Altschul

These aligned letters are ignored



PSI-BLAST: PSSM Construction

We will concentrate here on how the PSSM is constructed in PSI-BLAST. The PSSM
is restricted to those residues that have been aligned to a residue in the query
sequence. This removes from consideration any residues of database sequences
that align with insertions in the query sequence. Thus the PSSM will have the same
length as the query sequence. The PSSM constructed does not explicitly consider
gaps, the usual gap penalties being used even when searching with the PSSM. Thus
the gaps are treated exactly as in BLAST, i.e., not position-specific.

For any given alignment column, only those sequences that actually have a residue
aligned are considered, so that the number of sequences in the alignment changes
from column to column (see Figure 6.4). Each sequence is weighted using the posi-
tion-based sequence weight scheme (see Figure 6.1), slightly modified to include gaps
as another residue type, and to ignore fully conserved residues. The resulting weighted
frequencies are used in Equations EQ6.14 and EQ6.15, which are then substituted into
Equation EQ6.7 to obtain the PSSM parameters. The value of a used is not Nseq – 1,
where Nseq is the number of sequences, but N ¢ – 1, where N ¢ is the number of different
residue types observed in the column, including gaps, and thus varies from 1 to 21.
The initial version of PSI-BLAST used standard substitution score matrices and
Equation EQ6.13, but recent versions use the values of the terms qa,b/papb.

The scaling l used is that given by the chosen substitution matrix. The gap penal-
ties used are those applied in a standard BLAST run in combination with this
substitution matrix. This results in the scoring statistics for the PSSM being the
same as for standard BLAST with the same matrix. This was confirmed using align-
ment data for real sequences, as the theory has not been derived for these align-
ments. Consequently, the measure of significance for PSI-BLAST scores is readily
available, and one can readily ascertain which new sequences should be included in
the recalculation of the PSSM. The technique has proved very successful, as shown
by a comparison with some other sequence-search methods (see Table 6.1). A
further refinement of l, resulting in improved accuracy, has been applied in recent
versions of PSI-BLAST. The value is modified to take account of deviations from the
scoring statistics that result from compositional bias in the sequences.

Representing a profile as a logo
The score parameters of a PSSM are useful for obtaining alignments, but do not
easily show the residue preferences or conservation at particular positions. This
residue information is of interest because it is suggestive of the key functional sites
of the protein family. A suitable graphical representation would make the identifi-
cation of these key residues easier. One solution to this problem uses information
theory, and produces diagrams that are called logos.

In any PSSM column u residue type a will occur with a frequency fu,a. The entropy
(uncertainty—see Appendix A) in that position is defined by

(EQ6.19)
H f fu u a u a

a

=−∑ , ,log2

Profiles and Sequence Logos 
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X Figure 6.4
Illustration of how PSI-BLAST uses
the pairwise sequence alignments
from a database search in PSSM
construction. The BLAST local
alignments to the query sequence
(the top blue sequence) are shown
as rectangles. At each residue
position of the query, a PSSM is
constructed using only those
sequences whose BLAST alignments
involve that position. Thus at
position X only six residues are
considered in order to derive the
PSSM, as only six of the sequences
(including the query sequence) have
local alignments including this
position.
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Query sequence

§ PSSM is restricted to those residues that have been aligned to a residue in the 
query sequence 

§ At each residue position of the query, a PSSM is constructed using only those 
sequences whose BLAST alignments involve that position. 

§ Number of sequences in the alignment changes from column to column 

at position X only six 
residues are considered 



The Corruption of Profiles

§ PSI-BLAST E-values are calculated for the profiles PSI-BLAST produces, 
and can not be interpreted as referring to the original query sequence

§ Once a sequence unrelated to the query is included in a PSI-BLAST 
multiple alignment, and thus in the construction of PSI-BLAST’s profile, it 
will bring in many of its “neighbors” on the next iteration, and this process 
can snowball. Sequence weighting will exacerbate this process.

Profile corruption is a major problem for
Iterative approaches such as PSI-BLAST



PSI-BLAST vs BLAST

§ Because of its cycling nature, PSI-BLAST allows to find more distant 
homologs than a simple BLAST search. 

§ PSI-BLAST uses two E-values:

• the threshold E-value for the initial BLAST (-e option). The default is 10 as in 
the standard BLAST;

• the inclusion E-value to accept sequences (-h option) in the PSSM 
construction (default is 0.001).



PSI-BLAST Advantages 

§ Fast because of the BLAST heuristic.

§ Allows PSSMs searches on large databases.

§ A particularly efficient algorithm for sequence weighting.

– position-based sequence weight scheme, slightly modified to include gaps as 
another residue type, and to ignore fully conserved residues. 

§ A very sophisticated statistical treatment of the match scores. 



PSI-BLAST Caution 

§ Avoid too close sequences ⇒ overfit! 

§ Can include false homologs! Therefore check the matches carefully: include 
or exclude sequences based on biological knowledge. 

§ The E-value reflects the significance of the match to the previous training 
set not to the original sequence! 






